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SUMMARY

laws of comparison of dynamically simiIar fluid motions are derired by three different
based on the same principle and yielding the same or equivalent formulas.. In this

report prepared for publication by the NTationaI .~d~-isory Committee for Aeronautics, in
Jme, 1927, are outlined the three current methods of comparing d-pamically similar motions,
more especially of fluids, initiated respectiw$j by N’ewton, Stokes (or Efelmholtz), and RayIeigh.
These three methods, viz., the integral, the differential, and the dimensional, are enough dike
to be studied profitably together. They w-W presentIy be treated in succession then compared.

INTRODUCTION

Geometrically simi.Zar.@res.—If two figures are geometricaI]y similar, they have a constanb
scale ratio

z/7,=a...___________________ -__(l)-------__(l)

where 1, II are any LEO homologous lengths. If x, T1 etc., are homologous pointi coordinates
for the figures, X[xl = y/yl = zf.zl = a.

(?ewnetricaliy similar motions.—Two similar cotiguratiom perform geometrically similar
motions w-hen their homologous points trace simiIar paths in proportional times; that is, in
times t, tl ha~-ing any arbitrary ratio 5, the same for all homologous path segments. Thus v, z+
being corresponding path speeds,

where Z/n is the scale ratio of homologous moving parts, path segments, radii of curvature, etc.
S~ce by (2) the ratio 11V2/?+2 of accelerations normal to the path elements equals i/& along

them, the resultani accelerations, j, jl bear the same ratio and are alike directed. The con-
stant ratios l/n, t/tl, v/vi, 5/6 all may be different; only two c~n be independent, as (2) sho-ws.l

.DynamicaZly similar systems.-Iiet the homologous elements of two similar configurations
in similar motion be masses m, ml ha~-ing the constant ratio

m/rn1=c=p13/p1t13------_--__________--__--------(3)

p, PI being their densities; then, to keep their motions similar, all corresponding impressed -
forces must be in constant ratio and like direction.a For since these eIements ha-i-e resultant
accelerations j, jl K +/l, v12/11,their resultant impressed forces R, RI ha-re the ratio

R[R, =mj/m~,=pl'v'jP,Z~z,'---___-__--__--_--_---._--__(4J

which is constanh throughout, since P[P~, VL VIVIare SO. Further, the accelerations j, jl are
aIike directed; so then must be R, El. So, too, the corresponding forces on Iarge homologous

I Werethe paths .-or irraspaetire of dewibiig tff% themotionsstill ~oold bew+metriezdksimi~ar,but not as deEnedhereandin usual
writingson similitude. The gwme~calIy simflar motions here treatedare kinematical? SmiIsr because they trace similar paths in proportional
Umes.

~That is, their magnitudes are in constant ratio and their linesofactionsimilarIY Ieeatedin the two system, though the systems them.dws
may be neither simultaneous nor afike orientfxi in space.
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parts must be in constant ratio and like direction, as appears on compounding those on their
constituent elements.3 Also by the argument for (4) the constituents P, Q, P], Ql, ‘etc., of
R, RI, such as weight, pressure, friction, etc., must be in constant ratio and like direction, viz,
P to F’l, Q to Ql, etc. 11 fact for homologous elements they are concurrent and have similar

. force polygons. Hence
R/R, =PZ2v2]P,l,2v,'=P/P, =Q[Q, =etc.i . . .._--___ -_-_ -_. ---(4.)

Such systems are dynamicaHy similar and have (1), (2), (4) as their conditions or criteria of
similarity.

By (4) when p/Pi, l/n, v/vi are assumed constant R/R, is found constant. so, tIoo,if P/PI,

Z/il, R/Rl are constant, v/vi is constant, and the motions are similar. Fixing either three of these
ratios determines the fourth. Thus, premised initiaI similarity, similar mass systems in similar
motion are similarly forced; conversely similar mobile mass systems similarly forced similarIy
move. .In either case the systems are dynamically similar.

Summation of impressed .forces.—The resultant forces R, Rl at homologous eIements have
the components

mjX =P, + Q=-+etc.
mljl==Plx+ Ql,-+ etc. 1

--_-----_ --__--____(5)-_-___(5)

with liIie values for the y, z directions. These equations may be compared with (17), where
the magnitudes of P, Q, etc., not merely their ratios, have definite expression; also with (13),
where the magnitudes have only proportionate expression.

DYNAMICALLY SIMILAR FLOWS

A) NEWTOriIANOR INTEGRALMETHOD

_D@nMon.-Fluid streams that everywhere satisfy (1), (2), (4) are dynamicdy similar
systems, with similar flow fields and boundaries; hence are comparable in their corresponding

characteristics.
Clawijication qf ckiej.force ratios.—k before, the ratio of the acceleration forces on homol-

ogous parts of such systems must be the same throughout and must equal severally the ratios
of the corresponding impressed forces. The following tabIe exhibits the chief ratios of present

interest. Their proof foIlows the table. For aIl homologous elements the ratios g/g*, p/pi,

W,UIare assumed constant, p denoting viscosity.

TABLE 1

RATIO OF CORRESPONDING FORcEs ON HOMOLOGOUSFLUID ELEMENTS
-

I Ratio of impressedforces
Ratio of acceleration ~ — —

forces mjlmljl
~ Gra~]:ti:lnal bp

I /
apl V&ous

‘ressural’ 13m 1’3m ~a~pi=filau,/aiI

1pl%lyplll%lz---- _.--_\ gplyglplP1--------
1{ 1}

pl%2/P,ll%J12,for incompressible fluid ---------- ~[ulplllul
K~2/KI112, fOr elastic fluid___________________

Prooj ojjorce ratios.—The ratio in column 1 has been proved; that in column 2 is obviously
true.

To prove column 3, the pressure force on any smaIl volume of frictionIess fluid, being pro-
portional to volume times aIong-stream pressure gradient, varies as 13.bP/bl, as is well known,
where bp[bl= b (PVz)fbl. Hence for P constant the resultant pressure force varies as Pl%z; and
for p variabIe bpjdl = K/P.bp@, by hydrostatics; that is, the pressure force varies as K22, where
K is the buIk moduIus. One recaIIs that K,IK1 = Pcz/plc12 w-here c, c1 are the speeds of sound in the
fluids under the actual working conditions.

$A’ewton,reference1, proyes this theorem verbaIly without using symboIs. A different symbolic treatment is given by Sir Ricbrmd
(llazabrook in reference 2.
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If Z’Ju[blis the rate of distortion in any fluid elemen~, the entailed force on it ~aries as
lz.pboibl a do; hence the ratio in COIUmn 4.

Eramples oj w%ai7ar flow con&tions.-Granted Icinemat.ic similarity, -when the impqessed
forces are as in Table I the general conditions (41) for dynamic similarity are

w-here ordy the ratios of predominant forces are to be retained. .4 few examples will illustrate.
(a) Thus, if w-eight is the onIy dominant impressed force, the motions w-e dynamically

similar when the first ratio in (6) equals the second, viz, when

gl/o`=g,l,f2,'_ -.----------------------------_--(7)

which is the well-known Reech and Froude “law of corresponding speeds.”
(.8) If weight and elasticity are ne&ible, the first ratio in (6) is equated to the third,

gi~ing

i l;;$------------------7-----------------(s)

which is the familiar Reynolds’s condition for similarity of motioa of fluids. It applies to the
motion of airships, submarines, ski-u friction planes, fluids in pipes, etc.

(v) If there is considerable compression, while gra-rity and friction are negligible, the
first term is equated to the lower fourth, g-i-ring

c cl—=—
‘v VI---- : --------------------------------

(9)

which is Booth and Bairstow’s condition for similarity.
(~) If g, P, c aII are important, conditiom (7), (S), (9) must coexist; if all are negligible,

(6) gires p12$/p1112E12= pi??1A%?, thali is, all flows with simiIar boundaries are simiIar, ~hatever
the densities and velocities.~

Reactions in similar $ows.—II P, P, are corresponding reactions of a craft and its model
under conditions (7), P/Pi = gPZ3/glPJ13,-whence

P=.?’, gpz’--_-____________________________(lo)o)

where iYl = P1/glpl113is a dimensionless coefkient, say, given by model tests.
If g, K are negIigible, conditions (8) obtati, and P/Pi= PlU/I.LlllVl,or PfPl = d2#fplll%?, whence

P= N,plu, or P= O&’o’--_-- _-_- _-_- _____________ (ll)ll)

w-here .>7?= PJFJIcI, C= PJPlllzulz, both dimensionless coefficients.
If g, p are nebgilgible, and compression important, P/Pi= K12[KJ12; hence

P=~3KZ________________ -_-_ -_-____________ (12)

where A’s= PJKIZ1z,and conditions (9) pre-mil.
Let the Ps be all lifts or alI drags or other Eke directed forces. Then, if g, P, K all are impor-

tant together, the totaI of such reactions on the craft is

R= ~,gpz’ + ilTzpZu+~T@2~’=&V~@/G2, v~k’, C/V)=.?rP~’V2--____________5 (13)

got by summing (10), (11), (12), using K= PC’, then factoring off PZ2L2. One notes that (13) can
be written: Total reaction= grav-itational + frictional + pressural.

The -ralidity of (13) was premised on dynamic similarity of motion of the craft and its
model, as defined by the simultaneous conditions (7), (8), (9). That is,

$(i) hss the alternative form g/j=g*/j~. (8) the alternative f;P=fIIPI, where , ~1,p, Pt are corresponding frictions and Pr-m H tit flea Of
homologous surface elements 8.S,6S,. _WTth~,\IL to p, p, the re>%tant stresses have slopesjlp, fi/PI to the normsfs at 3S, 8SI. The “faws” (i), (8)
1,9) are but c!oroIlariesof (6) or (4J.

J More mnventiondfy one writes l?=pf%~fi (@/@,Yjb, a’e).
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Alternatively (13) can be written

R=plv f’(gljv’, VI?V,c/v)= L~’F1v.-.-------- ..--. -------- (13I)

found by factoring off F& and rearranging the result.:
2 2 they can as well say RmFZv by (131).Writers sometimes say (13) shows that R varies as pt o ;

The first statement is true for conditions makingj constant; the second for~ constant. (Fig. 1.)
Dynamic scale and scale e#ect.—If ATl( = PJglpJ?), found from a model tes~; is plotted against

glZ1/v12(= gi/v2) the graph is directly applicable to computing the full-scale reaction” (10); simi-
larly for the graph of jlT, against v/iv and _iiTSagainst C[V.

In such plots the dimensionless argumeni, say, v/iv, is treated as a single independent
variable. The graph is the same whether v varies alo~e or Z alone or o alone, or if two or three
vary together. If ATSvaries as (lv/v)n, i~ varies as P, VQ,v-”. The effect, for instance, of varying
1can be learned by varying v or v in the model test, and so for A~l, ATS.

One talk the independent dimensionless argument gl/v2 the dynamic scale for the motion
(a), and the variation of N, with scale the scale effect. Similarly v/lo is the dynamic scale for

‘be
.

Q
$

.$

.?
$2
bo
;

k

7

Re+molds Number, Vdlv

FIQ. I.—Drag coefEcfents CD= W v~d? cD’=Di’# W plotted winst WY fOr a sPhere in unifO~ trans18~0n
through a viscous fiuid. Data given in N. A. C. A. Report N’o.253. Either graph can be plotted from the
other, since CD’/Cn= Vdh

motion (P), and Z/c for (7). ATOdoubt the term ‘{ scaIe effect” origiuaIIy meant the effect of

changing the linear s.caIe ratio WI, then was extended to mean the effect of changing some more
complex argument , such as gl/v2, v/lvj c/v, etc., now calIed the dynamic scale. The simpler
scale ratios z/n, w P/pi, etc., are ca~ed scales Of length, time, pressure) etc.

The more complex reaction (13) is a function of three dynamic scales, shown in parentheses.
The scale effect here is the variation of .ATor R with one or more of the dynamic scales, or inde-
pendent arguments gnu’, v@, qb. But for the particular case g, v, c= o, as for a perfect liquid
unaffected by gravity, ATI, N2, AT3are constant and have straight-line graphs when plotted
against their scales. Then (13) gives R= const. times PZ2V2.

Generally, therefore, for dynamically similar fluid motions a dynamic scale is any one of the
independent dimensionless arguments in the formula for the fluid reaction; the scale effect-is
the variation of such reaction due to variation of the arguments.

Arbitrary and d-erivedscale ratios.—As seen in the introduction, geometric similarity requires
one constant scale ratio, sayj 1/11,for length; kinematic similarity two scales, say, 1/11,t/tl, for
length and time; dynamic similarity three, say, 1/11,t/tl, p/pi. From these many others may be
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derived, say, vfqj t[h, p[pl, v/vi, etc., in case of fluids. Any three can be taken as determinative,
then combined to form derived ratios, as exemplified in (2). For dynamic similarity we mbi-
trari~y chose, at the outset, 1111,t/tl, r~./ml, because lengt.h, time, and mass usuaUy appear as
basic. For the same service with fluid systems Helmholt z (reference 3) takes p/Pi, v/vi. v/o1,
while other writers choose still other scales as fundamental.

Thus for geometrically similar ftuid motions Helmholtz, assuming

PI/P=T - VJV = g uJu=t’1/B=wl/w an-.__--_________ (15)15)

as gi-ren constants, thence derives the further ratios

@c= yl[y = 21/s = qh tl/t = q/n’ P1/p=n’rP+ coast----------- (16)

for use in comparing the differential equations of motion of the two fluids.

m DIFFERENmAL}IETHOD

The conditions (6) for dynamically similar motion of two fluids can also be deri-red from the
standard differential equations of motion of such fluids, viz, from

z) I ae
pu=pg. —c22+/.tA2u+~ pa;ax 1________(17}

‘~+PlA2UI++#
“ti’ = ‘19’=– c’ &r, 3 b%

with like expressions for the y, z and yl, Z1 directions.G For if the motions are dynamically
similar corresponding terms, all being forces, must have the same ratio,

Expressing these ratios in fite dimensions gives

which multiplied by &/zls become the relations (6) for the x direction, viz,
PZ2U2 _ gpxz pz2c* _ .l.lzu

p&@?J12–glplzls –pfrl%i* –,UIZIUI

Thus the differential method yields the same result. as the A’ewtonian. It is lXTewton’s
method in Stokes’s shorthand, except that Stokes would fist write the forces, then their ratio;
h~ewton would write their ratio directly. But to write their ratio one must know approximately
their nature and analytic expression.

Helmholtz reverses the above argument. Assuming the relations (15), (16), he says they
transform the first of (17) into the second, omitting the g terms. Hence he infers that model
data serve to predict the hydrodynamic behavior of full-scale craft when the relations (15),
(16) are maintained.

Diverse and sundry treatments of this topic are found in references 8, 9, 10.

(C) DL%IENS1OXALMETHOD

Mechanical units.—Ln mechanics three measuring units, say, of length, mass, time=,
M, T, arbitrarily taken as fundamental, are combined in various po-ivers to form other kinds
calIed derived units, such as Z7=ALXXYP, A being constant., and x, y, z > 1. Table H
illustrates. These two classes of units, viz, fundamental and deri-red, serve to measure
mechanical quantities of e~ery kind, such as length, speed, torque, etc. Thus any mechanical
quantity R, if a function of n others, aLl dif?erhg in kind, can be -written

R= SUQl`Q2'___-Qmm_ -__--______ -_______ --___ -__(l8)

where M, a, b----m are pure numbers, and Q may involve either fundamental or derived units.
Table II gives examples.

a% a% &u. au aU *.
$Here A%!-—+—+—. L?=—+—+—, etc., for A2u1,61,a=? ~~ az! a~ .3Y a2
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l?asicjormtila.-To be valid for alI unit systems (18) must be dimensionally homogeneous.’
Then it can be written, if [R]= [~Ia~2b----~nm] = [P],

R=zATP __________________________________ (19)

where N is a pure ~umber, This is the basic formula of dimensional theory, and is most general
when the Ps are al] the separate independent Q products t.hab can be formed having the dimen-
sions of R.8

Homogeneous products.—To find these P products,’lre first rn:ltipl~ aw Q triad, w QXQ’QZ,
by each remaining Q successively, and equate to [R] the dimensions of each resulting product.
The ensuing n–3 equations, with tentative exponents a, b, c, are

[PJ = [QIa~2bQ3’Qd =“[R] [P2]=[QI”Q,’Q,’Q,] =[R], etc--.-.-(20)-..--- (2O)

Now replacing [R] and [Q] by their values @ L, M, T and sol~ing (20) for a, b, c-.-..--, gives PI,
P2,----- .The folio wing example illustrates. For a rigorous analysis special works on dimen-
sional theory may be consul~ed (referemes 4, 5).

Reactions in similar jtow.s.-If the reac~ion R of. a body ~ a fluid stream depends solely
on ,0,1, 0, g, K, c, or density, size, speed, weight, viscosity, elasticity, all the separate ~dependent
products having the dimensions of R possible to make with them amo~mt to 6–3, say, PI, Pz, P%.
To form these, we take any triad P’Pv’ of the six independent quantities and multiply it succes-
sively by the remaining ones g, y) c, giving

P,= p’1%’.g P2=-pwd./l Pa= pgz%’.c

and equate the dimensions of each product to [R]= [ML/Tz.] The first yields, by Table H,

(.II/L’)’.Lb. (L[T)c.L/T2= JIL/F

each unit having the same aggregate exponent in both terms. On equating the indices of
L, .JI, T successively this gives

–3a+b+c+l=l ~=.l _&~ = —~

Thus a= 1, b = 3, c= O,whence P,, =pZ3g. A IiI<eprocedure gi-res d= O, e= 1 =j, whence P,= lFP,
Similarly g= 1, h= 2, i= 1, whence Pa= Plzcc.

By (19) the reaction now is

R= ~1 pl’g+ hT@+ h’3P~2VC= p~’o’j(gllv’,V/lL’, C)O) - ________________ (13)

which is a general resistance equation for the specified dynamical conditions, viz, that R is a
function solely of p, 1, 0, g, ~, c. From this (13J also is found as before.

By (13), if the arguments in parentheses are gi~-eg any specific values tl~e same for model
and full scaIe, j is the same for both; hence

R= Nph’

~~here N= j(glll/v2, VJ!lO1) C+A), the same as by Newton’s method.

COMPARISON OF THE THREE METHODS

In the foregoing text the same criteria for dynamical similarity in two flow systems w-cre
found by three different methods of analysis-the h~ewtonian, the differential, and the dimen-
sional. In each the physical quantities governing the flow y-ere premised from experience.
Thence were found the ratios of corresponding impressed forces of each kind on homologous parts
of the fluid, viz, weight ratio, pressure ratio, etc. These ratios, by definition of dynamic simi-
larity, must each equal the ratio of the resultant acceleration forces on those parts; viz, the ratio
mjlmljl.

By Newton’s method we directly equated the ratio of these acceleration forces to the
several ratios of corresponding impressed forces, thus obtaining specific. conditions for dynamicaI

. —.
TThat is, all terms of (18) must comprhe tbe same fundamental units, each baring a constant. aggregate exponent throughout the quation.
~Dividing (19)by R gives $ (m, m-- ..ri — ,) –O the m being dimensionless products. This is Buckingham’s = theorem (reference 4).
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similarity, and formukts for the reactions of any fluid system in terms of those of its model. By
the second method -we fit wrote the differential equations for the two fluid motions assumed
dynamically similar, then equated the ratios of corresponding terms, thus obtaining the same
result as before. By the third method we fist equated the unknown reaction R on one fluid
eIement to the sum of all the terms we could form from the flow-governing quantities arranged in
power products each having the dimensions of R. Doing the same for the homologous element.,
then taking the ratio of the R forces, gave the same reaction formula as found by the other methods.

At first sight the dimensional process seems to be a routine algebraic operabion requiring
less knowledge than is needed for the two other methods. In reality au three demand adequate
jud.sent of the kind of physical quantities governing the motion, and their comparative
importance. In all tbi-ee cases the assumed physical agencies are the same, the terms in the
dynamic equations are analogous, and the fial ~orking formuIas are the same or equivalent..
In all, the derived working formula contains a dimensionless coefficient that is not deduced
theoreticaIIy, but is to be found from model tests, then appLied to full-scale apparatus operating
under dynamically similar conditions. In all, the “law-s of comparison” are merely expressions

of equality of like dynamic scales, viz, equality of the ratio of the acceleration forces to the
corresponding ratios of the dominant. impressed forces.

T.4BLE II

QU.4NTITIES EXPRESSED IN BASIC UNITS OF LENGTH, TIME, AND MASS, L, T, 31
The “dimensions” of a phFsicaI quantity sre the degrees of the fnndamentaI units in its formula. Thus the dimemsious of an accelera~ion,

which are symbolized by [L T-2], are 1 in length and -2 iu time. ComIIIonJy the bracktts are mm~ted.from such-simple L, T, M erpressiom
mx containing other”symbola. The dime~.ious of a force are ML T+, viz. 1 m mass, 1 in length, —2m tree; the dunmsion of au angle, a sine,
cosine, tangent, etc., is L.L-1, thd is zero. Lo arithms in ph?sical eqnaciom operate only ou dimensionless quantities, such aa pure numbers
m ratios of”likephysitalquantities;henceare%irneusicm[ess.

—

.4 derived unit,being formed of pxwrs of fundamentalunits,hasthe formU= ~ZZMYTz, with dimensions L.lfx Tz. Thus a force F= ms[fl=
.4ML T+, where m, 8, t are mass, length, time in any eonretient units. Its dimensions are written [Fl=[m.s/t~I=[A ML P:] =ML P.

ID homogeneo~<equations all terms bare tire same dimensiorx, that is, the same aggregate exponem for each baaic unit. Thus in the last equa-
tionof TabIe H aach tsrm has the dkneusious ML-i T+ for [P@]=XL+.IJ !P= ML-l T_f, and b’s] = .M-L+W-L T+IL=Jf_L-~T+. In the
familim proie~life formula c= ft+c,M=L V. T=L TI=[s1=[c], where c (=u.) is arsfoeit?.

I

Kind of quantity S~mbol. Formula Jlimensions of eaeh term

Derived units, U= ALxMYT’

Area, surface--------~ -----____\ Sol% _________________________ L2.
Volume_.._._.._________.._=__ T=l~_________________________ LS.
bale _________________________ e=sjr=arc+radius ------------ Lo-
Linear velocit~----------------- u=z[i=dxjdt= ti________________ L~l.
Linear acceleration _______ _:____ j=u/t=du/dt=$z/do __________ LT*.
AnguIar velocity --------------- u=e[t=deldt=du[ d~____________ T–l.
Angular acceleration ____________ a=~)t=da/dt= @[tz____-----__-– T*.
Densit~----------------------- - .ML~.~=m/r=mp%-----------------

Force, thrust ___________________ F=mj=ms/P __________________ 31L!F.
Torque, moment --------------- Q= F1_________________________ M12T+-
Pressure, friction _______________ p=F/S, j= F/S------------------ JIL-ZT+.
Work, energy, potent ial --------- V= Fs------------------------ 31J?2T+.
Pow-er, activity __-------- _-____, P= Fu------------------------ .?JL’P.
Viscosity ----------------_ -____; p=j+du/dg=~/u ______________ ML-IT-I.
Kinematic viscosity ______________ v=p/p ________________________L’T-I.
Fhrxof fluid -_------- __. ...____’ += Jq=d8_____________________ UT+.
Velocit~- potential- ___ . . ..____ \__\ P= —.fq~ds -------------------- L’T-l.

Geometrical and mechanical equzfions, R= zXP

I ~=c(e.,c–e-x,c)=. h h ~ ____ L,Length of catenar~-------------
()

=L.L13.

Area of ellipse ----------------- 8=2ab----_- _--__ -------c ______ h’,

Volume of frustum of cone_ ------l r=+h(?+r’+r’2) ------------ u, =[L(IY+-LL-+L3].

Period of simple pendulum ------- t=;zm --------------------- T,
!

.>~+?.
Mutual attrac. of two particles___ F=w3ml r’, where [K]= L3/31F--- LXP, =L3M-r T_’..WL~.
Strength of line scarce ---------- m=2zaqu ______________________ 12T-i7 =L.LT_l.

“pfor source-sink in plane stream-- I P=mc+-r log;, w-here [G]=.U)T-~ L2!V =[LT-.L+-L’T_, IogLO~.J

Acceleration of ~-is+ous particle___ ti=-bp[p az’~vA%____________ LT* =[p/P.fc+ ,7-LIZ’].
IYose pressure on falling droplet ___ pn=p@E+ 1.5p~,/a _______________ KL-IT*= [P&+ PD/c].

.
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SYMBOLS USED IN TEXT

1, I.. _.-_ . .._- Homologous lengths in simiIar figures.
z, zI, eta-. -.. _.. - Homologous coordinates.

_____Jllrnm -0[ tracing homologous paths.i, fl----

V, zj __________ Corresponding path velocities.
~ ;l -- --------- llorresponding path accelerations.
j, jl __________ Corresponding total accelerations.
n, ml--------- Homologous masses.
a, b, c-------- Arbitrary numerical ratios 1/11,t/tl, m/mI; also tentative exponents.
p,p, v, K------- Density, viscosity, kinematic viscosity, bulk modulus; ditto for pl, Ml, 01, KI.

~= Jfi-------- Speed of Soundin elastic fluid; ditto for cl.
R, RI _________ Resultant forces on mass elements m, ml.
P, Q, etc ------- Components of R; PI, C!I,etc., components of El.

P, f---------- Yressure and frictio% per unit area; ditto for P1, .fl.
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